Early Childhood Learning
Researching Data Modeling with Young Learners
When you think of teaching about data analysis and data science, what
might come to mind is a group of high school or college students
working on statistical analysis problems. However, at the New York Hall
of Science (NYSCI), teaching data science looks very different: 5 to
8-year-olds and their caregivers exploring the museum through the lens
of exhibit designers, asking questions, and collecting, analyzing,
organizing, and interpreting data.
Data science and statistical
reasoning are now considered essential at the middle, high school, and
college level, so much so that the Next Generation Science Standards
explicitly list “analyzing and interpreting data” as one of the Science
and Engineering Practices (NGSS Lead States, 2013). Historically,
research on students’ understanding of data science concepts has focused
mainly on children in middle school and above (Makar, 2016). In recent
years, this research has expanded to investigate young children’s
understanding of data science and data modeling (English, 2012).
However, this research is limited in that it is mainly focused on
determining how young children could be introduced to data science
concepts in schools and classrooms, and the educational strategies that
have been developed to date have taken place mainly informal settings.
Project Overview and Research Questions
In a departure from these traditional settings and investigations,
NYSCI is employing an ambitious new approach in an initiative entitled, Big Data for Little Kids: Data Modeling with Young Learners and their Families,
supported by the National Science Foundation (DRL1614663). We have
created a data modeling program and curriculum for children ages 5 to 8
and their caregivers at the museum and studied its impact on children’s
learning and family interactions. The concepts we focused on are derived
from previous research on data modeling with elementary grade students
(Lehrer and Schauble, 2002; Lehrer, Kim, and Schauble, 2007). These
studies examined how young children engage with key ideas in data
science, such as, 1: You can define your data, 2: You can choose how to
represent your data, and 3: You can find answers to your questions by
looking at the data.
Centered on these modeling concepts, the research questions driving the project are:
- How does the curriculum need to be focused and structured in
order to engage children ages 5 to 8 and their caregivers with the
target concepts and practices as they work together, over a sustained
period of time, in an informal learning setting?
- When
family groups participate in the six-week workshop series, is there
evidence of sustained engagement with the targeted data modeling
concepts and practices among children and their caregivers?
- When family groups participate in the six-week workshop series, is there evidence that participating children increase their use of positive approaches to learning, such as taking initiative, taking responsibility for solving problems, and actively drawing on available resources to address a need?
Digging Into the Research Methods
Wrestling with such an enormous undertaking, we were faced with two
immediate challenges, 1: How do we integrate data modeling concepts into
a museum workshop program? and 2: How do we capture relevant evidence
to address our research questions?
In terms of the workshop program, the key ingredient to integrating data modeling concepts was leveraging NYSCI’s Design, Make, Play
approach. We encouraged families to engage in co-learning experiences
by using the museum setting as an invigorating backbone for data
exploration and conversation. For more details on how we worked through
this challenge, see this blog posting.
Once
we figured out the workshop program, we focused on the latter
challenge, developing methods for observing how families learned
together in the workshop. We began by exploring the relevant literature
to understand how other researchers had captured children’s engagement
with data modeling and families’ approaches to learning. We decided to
adapt observation protocols from previous research that had been used to
assess parent-child interactions, children’s learning in formal
settings, and qualities of classroom settings, 1: the Mother-Child
Interaction protocol (MCI), 2: the Child Observation Record (COR), and
3: the Classroom Assessment Scoring System (CLASS).
Then came the
real test: using the protocols during the actual workshops. Researchers
recorded observations using these protocols live during the workshop,
and we also recorded audio and video of each family for further
analysis. We quickly learned that attempting to use three different
observation protocols in an active-inquiry-based workshop program was an
impossible task for a number of reasons. First, we found it challenging
for two researchers to be able to observe all of the families
participating in the workshop. Second, one of the protocols was
developed for younger children and didn’t work as well with 5 to
8-year-olds in our informal setting. Lastly, when it came to observing
the whole classroom, it became clear to us that the informal museum
workshop setting did not fit the same mold as the formal classroom
criteria the protocols were built to assess.
Rethinking Our Data Collection Activities
Keeping all of these things in mind, we restructured our data
collection methods for the second iteration of the program. We
discontinued use of two of the protocols (COR and CLASS), revised the
protocol focused on how families interact (Parent-Child Interaction),
and rather than attempting to do the observations live during the
workshops, we decided to code using the recorded video data after the
workshops.
During the actual workshops, we focused on having each
researcher follow a single family unit to create more of a case-study
analysis. We also placed a greater emphasis on talking to the families
after each day of the workshop to gather more information about their
reflections on the data concepts and activities they worked on that day,
as well as feedback on the programmatic elements.
Finally, we
developed coding schemes to analyze the conversations between children
and their caregivers using the audio and video recordings of the
workshop. The data collection methods used in the second iteration
proved to be a much more manageable endeavor, and allowed researchers to
be more actively involved in talking with families throughout the
workshop.
Reflecting on Our Research Process
So what have we learned from all of this?
- More isn’t necessarily better.
Having three protocols to look at the data through different lenses seemed like a good idea initially, but once we got a better sense of the workshop dynamics, we realized we could still build a robust evidence base with a more focused and intense use of one main protocol. - Don’t rule out the power of being in an informal setting.
Trying to fit the mold of other protocols that were for formal classrooms did not work well. We needed to be more flexible and mindful in recognizing ways that the museum itself is an asset to why the program was so engaging. - Getting to know your participants doesn’t mean getting in the way of the research.
Some of the most powerful information came from the interactions researchers and participants had during the workshop as we built case studies and during the reflection conversations; being in an informal setting and focusing on one main protocol are part of what allowed for these connections to grow organically.
We hope that our Big Data for Little Kids journey can help
illuminate the successes and challenges of conducting research in an
informal museum setting. Currently, we are still in the process of
analyzing our preliminary findings. Stay tuned for more about what we
find out!